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Abstract

Background: An accurate estimation of athletes’ energy needs is crucial in diet planning to improve sport
performance and to maintain an appropriate body composition. This study aimed to develop and validate in elite
athletes new equations for estimating resting energy expenditure (REE) based on anthropometric parameters as
well as bioimpedance analysis (BIA)-derived raw variables and to validate the accuracy of selected predictive
equations.

Methods: Adult elite athletes aged 18–40 yrs were studied. Anthropometry, indirect calorimetry and BIA were
performed in all subjects. The new predictive equations were generated using different regression models. The
accuracy of the new equations was assessed at the group level (bias) and at the individual level (precision
accuracy), and then compared with the one of five equations used in the general population or three athletes-
specific formulas.

Results: One-hundred and twenty-six male athletes (age 26.9 ± 9.1 yrs; weight 71.3 ± 10.9 kg; BMI 22.8 ± 2.7 kg/m2)
from different sport specialties were randomly assigned to the calibration (n = 75) or validation group (n = 51). REE
was directly correlated with individual characteristics, except for age, and raw BIA variables. Most of the equations
from the literature were reasonably accurate at the population level (bias within ±5%). The new equations showed
a mean bias −0.3% (Eq. A based on anthropometric parameters) and −0.6% (Eq. B based on BIA-derived raw
variables). Precision accuracy (individual predicted-measured differences within ±5%) was ~75% in six out of eight
of the selected equations and even higher for Eq. A (82.4%) and Eq. B (92.2%).

Conclusion: In elite athletes, BIA-derived phase angle is a significant predictor of REE. The new equations have a
very good prediction accuracy at both group and individual levels. The use of phase angle as predictor of REE
requires further research with respect to different sport specialties, training programs and training level.
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Background
Total energy expenditure of most athletes is expected to
be greater compared to general population because of
training, and changes in metabolism and body compos-
ition [1]. At the same time, estimating energy needs is
crucial in diet planning to improve sport performance
and manage body mass in weight-category sports [2, 3].
Further, under- or over-estimating athletes’ energy re-
quirements might result in unwanted changes in fat-free
mass (FFM), and/or fat mass (FM), impaired perform-
ance and health concerns, for instance increased risk of
injuries or cardiovascular diseases [1, 2, 4].
Energy requirements may be assessed based on resting

energy expenditure (REE) [5], which is the amount of
energy expended at rest by a fasted individual in a ther-
moneutral environment, representing 60–70% of total
energy expenditure in normal-weight healthy adults and
variable percentages in athletes [6]. In human nutrition
REE is commonly estimated by using predictive equa-
tions based on easily available variables such as age, stat-
ure, body weight, etc. Most of the widely used equations
for estimating REE in the general population (Harris and
Benedict (HB) [7], Schofield [8], FAO/WHO/UNU [9],
Mifflin [10] and Owen [11]) have been developed based
on minimally active or sedentary individuals. Taking into
account different physical activity level and body com-
position (i.e. higher FFM and body cell mass with lower
FM) relative to general population [12–14], the equation
used for estimating REE in the general population may
be not appropriate for athletic individuals. As a conse-
quence, few specific predictive equations for REE have
been developed for athletes, [15–18], indeed exhibiting
some limitations. The study by De Lorenzo et al. in-
cluded a small sample size (n = 51) [15] whereas the one
by ten Haaf et al. involved recreational athletes exercis-
ing on average 9.1 ± 5 h a week [17]. Wong et al. studied
Asiatic athletes only [16] and Watson et al. [18] only fe-
males. Finally, Jagim et al. [5] determined the accuracy
of selected predictive equations for REE, but they did
not propose a validated formula.
REE is expected to be associated with FFM, which is a

reasonable surrogate body composition marker for oxi-
datively active tissues [19]; in other word, FFM might be
used for predicting REE, and from a practical point of
view this is even more credible if field techniques are
employed. In this perspective, bioelectrical impedance
analysis (BIA) is widely used for assessing body compos-
ition in athletes [20], but the interpretation of BIA re-
sults depends to a large extent on the equation used to
estimate FFM [21]. Interestingly, raw BIA variables such
as bioimpedance index (BI-Index = stature2/impedance
at 50 kHz) and phase angle (PhA) might be taken into
account as possible predictors of REE. In fact, while BI-
index is strictly related to FFM, PhA is thought to be a

proxy of both water distribution (i.e. the ratio between
extracellular water-ECW and total body water-TBW)
[22], body cell mass and cellular integrity [23]. So far, a
relationship between REE and BI-index and/or PhA has
already been observed in normal-weight or overweight
subjects [24] as well as in patients with obesity [25] and
Crohn’s disease [26]. Not surprisingly, the results of
these studies suggest that raw BIA variables may im-
prove the prediction power under physiological condi-
tions [24], but only to a limited extent in subjects with
altered body water distribution [25, 26].
Based on this background, the primary aim of this

study was to develop and validate new predictive equa-
tions of REE in elite athletes, considering not only an-
thropometric measures, but also raw BIA variables. The
accuracy of new equations, as well as the one of selected
predictive equations of REE used in the general popula-
tion or in athletes, was evaluated at the group level (bias)
and at the individual level (precision).

Methods
Study design and subjects
In the present study we have retrospectively analysed
routine data collected between January 2012 and De-
cember 2019 in elite athletes defined as those who have
previously competed as regional and/or national players
[27].
Subjects were selected for this study according to the

following inclusion criteria: (1) both sexes, (2) age be-
tween 18 and 45 yrs and (3) at least 24 h/week of train-
ing. Subjects affected by overt metabolic and/or
endocrine diseases and/or regularly taking any medica-
tions or using any drugs affecting energy metabolism,
were excluded. This study was conducted in accordance
with the Declaration of Helsinki and was approved by
the Federico II University Ethical Committee.
All measurements were performed early in the morn-

ing (8.30 a.m.) after an overnight fast (10–12 h) accord-
ing to standardized conditions, i.e. abstention from
alcohol, caffeine or other thermogenetic substances,
smoking and any physical activity for 24 h (in most cases
36 h) prior to the assessment.

Anthropometry and bioelectrical impedance analysis
Body weight was measured in duplicate to the nearest
0.1 kg using a platform beam scale and stature was mea-
sured in triplicate to the nearest 0.5 cm using a stadi-
ometer (Seca 709; Seca Hamburg, Germany). The
subject wore light clothes and no shoes. Body mass
index (BMI) was calculated as body weight (kg) divided
by squared stature (m2).
BIA was performed by phase-sensitive device (Human

IM Touch, DS Medica S.r.l., Milan, Italy). Measurements
were carried out with empty bladder, in a supine
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position for at least 10 min before starting the measure-
ment). After cleaning skin surface, patients were asked
to lay with upper and lower limbs slightly abducted, so
there was no contact between the extremities and trunk.
The measuring electrodes were placed on the anterior
surface of the wrists and ankles, and the injecting elec-
trodes were placed on the dorsal surface of the hands
and the feet, respectively (overall, eight electrodes). Data
for impedance and PhA from the non-dominant side of
the body, measured at 50 kHz, were considered. BI-index
was calculated as the ratio stature2/resistance (cm2/
ohm).
Before each test the analyser was calibrated with the

calibration considered successful if resistance value was
between 382 and 385Ω and reactance was 44–46Ω, as
indicated by the manufacturer guidelines. The test-retest
coefficient of variation (CV) (as determined in ten sub-
jects) was always less than 3%.

Resting energy expenditure
REE was measured (MREE) by indirect calorimetry [28]
using a canopy system (Vmax® Encore system, CareFu-
sion Corporation, U.S.). The instrument was routinely
checked by burning ethanol, whereas oxygen and carbon
dioxide analysers were calibrated on the test day using
nitrogen and standardized gases (mixtures of nitrogen,
carbon dioxide and oxygen).
Measurement conditions for by indirect calorimetry

were defined following the suggestions made by Com-
pher et al. [29] and Fullmer et al. [30]. In addition to the
standardized conditions already mentioned, REE was
measured with the subject laying down, but awake, on a
bed in a quiet environment. After a 15-min adaptation
period, oxygen consumption and carbon dioxide produc-
tion were measured for 45 min. Only steady state periods
of measurement were selected according to the proce-
dures for the ventilated hood system (< 5% CV). The
first 5 min were discarded. Also, the inter-day CV (as de-
termined in 10 subjects on subsequent days) was always
less than 4%. The flow throughout the canopy was modi-
fied in order to maintain the CO2 between 0.6–0.8%.
Energy expenditure was calculated using the abbrevi-

ated Weir’s formula, neglecting protein oxidation [31].
Data were excluded from analysis if the respiratory quo-
tient was outside the expected range (0.71–1.00) and
when measured REE was ±3 standard deviations outside
the mean REE.

Predictive equations
In the validation group REE was predicted (PREE) using
five equations that are widely mentioned with respect to
the general population (Harris & Benedict [7], Schofield
[8], FAO/WHO/UNU [9], Mifflin [10] and Owen [11]),
and three athletes-specific formulas from the literature

(De Lorenzo [15], Wong [16] and ten Haaf
[17])(Table 1).

Statistical analysis
Statistical analyses were performed using IBM SPSS
(version 26). All data are presented as mean ± standard
deviation (SD), unless otherwise specified, and signifi-
cance was defined as p < 0.05. The Kolmogorov-Smirnov
Test and the Shapiro-Wilk Test were used to assess if
variables were normally distributed.
As presented in Table 2, subjects were randomly

assigned to either a calibration or a validation group.
As far as statistical power is concerned, in the calibra-

tion group for alpha level = 0.05 and beta = 0.20 a sample
size of 75 subjects is requested to reach a p < 0.05 for
r = 0.330 (R2 = 0.10). In the validation group a sample
size of 51 subjects is adequate to identify a significant
between-groups difference of 50 kcal with a standard de-
viation of 125 kcal.
Linear correlation was applied for evaluating associa-

tions between variables. Multivariate linear regression
analysis was performed to develop the new predictive
equations, with REE measured by indirect calorimetry as
dependent variable. We generated models as follows: in
Model 1, age, sex, weight, stature and BMI were set as
predictors, while in Model 2 we added the raw BIA vari-
ables (BI-index and PhA). Coefficient of determination
(R2) and standard error of the estimate (SEE) were con-
sidered for assessing the predictive power of formulas.
The regression equations, derived from the calibration
subset, were applied to the validation group.
Differences between PREE and MREE as well as

bias, i.e. the mean percent difference, were both used
as a measure of accuracy at the population level. Bias
was found acceptable if within ±5% [32, 33]. The per-
centage of patients with a PREE within 90–110% of
MREE was used as a measure of accuracy at the indi-
vidual level (precision accuracy). Values lower than
90% were classified as underprediction, while values
higher than 110% as overprediction. The root mean
squared error (RMSE) was used to define the predic-
tions obtained with these models. Finally, comparisons
of PREE-MREE differences vs mean PREE-MREE
values were performed by Bland and Altman plots to
estimate the limits of agreement [34].

Results
One hundred and twenty-six male elite athletes from dif-
ferent sport specialties were included in the analysis. As
mentioned above, data on anthropometric measures, raw
BIA variables and MREE are reported for the calibration
and validation groups in Table 2. Athletes from seven
sports were recruited, practicing masters swimming (n =
24, 19%), cycling (n = 22, 17.5%), running (n = 21, 16.7%),
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karate (n = 17, 13.5%), water polo (n = 16, 12.7%), ballet
dance (n = 15, 11.9%) and boxing (n = 11, 8.7%). Individ-
ual characteristics for each sport specialty are reported
in Table 3. BMI was the highest in water polo players
(25.9 ± 1.8 kg/m2) and the lowest in runners (20.6 ± 1.2
kg/m2). MREE was the highest in water polo players
(2195 ± 244 kg/day) and the lowest in ballet dancers
(1567 ± 107 kg/day) in line with the differences in body
weight. Mean value of PhA varied between 8.57 ± 0.65
degrees in boxers and 6.96 ± 0.54 degrees in master
swimmers, being higher in boxers, cyclists and water
polo players (Table 3).

Developing new predictive equations
Linear correlations showed that MREE of the athletes
directly correlated with individual characteristics and
raw BIA variables, except for age (r = − 0.124, p = 0.290).
Actually, a strong correlation was found between MREE
and body weight (r = 0.768, p < 0.001), followed by BMI
(r = 0.623, p < 0.001), BI-index (r = 0.606, p < 0.001) as
an index of FFM, stature (r = 0.489, p < 0.001) and PhA
(r = 0.327, p = 0.004).

Then, multiple regression analysis was performed to
assess the relationship between MREE and different sets
of potential predictors. Basic anthropometric measures
(weight, stature and BMI) and age (although not signifi-
cant in bivariate analysis) were considered first in Model
1 to generate the following Eq. A:

REE (kcal/day) = 17.2 × Weight (kg)
(1.5)
0.794

− 5.95 × Age (yrs)
(1.9)
− 0.218

+ 748
(117.9)

(unstandardized regression coefficients with SE in
brackets and beta coefficients in italics)
R2 = 0.637; SEE = 150 kcal/day.
When raw BIA variables (BI-index and PhA) were

added to the Model 2, PhA was included whereas age
was excluded from the model, developing the following
Eq. B:

REE (kcal/day) = 16.3 × Weight (kg)
(1.5)
0.755

+ 95.4 × PhA (degrees)
(22)
0.291

− 93
(197)

Table 1 Resting energy expenditure predictive equations in their original unit (kcal/day, except Schofield and FAO/WHO/UNU (MJ/
day))

Equation Formula

Harris and Benedict [7] Males 13.75 ×Weight (kg) + 5 × Stature (cm) – 6.76 × Age (yrs) + 66.47

Schofield [8] Males (18–30 yrs) 63 ×Weight (kg) – 42 × Stature (m) + 2953
Males (30–60 yrs) 48 ×Weight (kg) – 11 × Stature (m) + 3670

FAO/WHO/UNU [9] Males (18–30 yrs) 15.3 ×Weight (kg) – 27 × Stature (m) + 679
Males (30–60 yrs) 11.6 ×Weight (kg) – 16 × Stature (m) + 879

Mifflin [10] 9.99 ×Weight (kg) + 6.25 × Stature (cm) – 4.92 × Age (yrs) + 166 × Sex (M = 1, F = 0) – 161

Owen [11] Males 10.2 × Weight (kg) + 879

De Lorenzo [15] 9 × Weight (kg) + 11.7 × Stature (cm) − 857

Wong [16] 13 ×Weight (kg) + 192 × Sex (M = 1, F = 0) + 669

Ten Haaf [17] 11.936 × Weight (kg) + 587.728 × Stature (cm) – 8.129 × Age (yrs) + 191.027 × Sex (M = 1, F = 0) + 29.279

Table 2 Characteristics of the study sample for the calibration and validation groups

All
(n = 126)

Calibration group
(n = 75)

Validation group
(n = 51)

Age, yrs 26.9 ± 9.1 26.8 ± 9.0 27.1 ± 9.5

Weight, kg 71.3 ± 10.9 71.4 ± 11.3 71.1 ± 10.6

Stature, cm 177 ± 7 177 ± 7 177 ± 7

BMI, kg/m2 22.8 ± 2.7 22.8 ± 2.8 22.8 ± 2.6

MREE, kcal/die 1831 ± 250 1834 ± 261 1826 ± 234

RQ 0.821 ± 0.07 0.832 ± 0.07 0.822 ± 0.07

BI-index, cm2/Ω 65.9 ± 9.6 65.9 ± 9.8 66.0 ± 9.4

PhA, degrees 7.76 ± 0.76 7.79 ± 0.74 7.73 ± 0.78

Data are expressed as mean ± standard deviation
BMI body mass index, MREE measured resting energy expenditure, RQ respiratory quotient, BI-index bioimpedance index, PhA phase angle
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(unstandardized regression coefficients with SE in
brackets, and beta coefficients in italics)
R2 = 0.675; SEE = 141 kcal/d.

Validation of predictive equations
To assess the accuracy of the new predictive equations,
as well as of those selected from the literature, 51
athletes were randomly assigned to the validation group.
Prediction accuracy at the population level was
evaluated by PREE-MREE difference, mean bias and
RMSE in kcal/day (Table 4).
The new developed predictive formulas showed a

mean bias < 1% (Eq. A − 0.3%; Eq. B − 0.6%) with the
lowest RMSE values of 88 kcal (Eq. A) and 76 kcal (Eq.
B); while REE seemed to be underestimated by most of
the other equations, with the exception of those by De
Lorenzo and ten Haaf (Table 4). Overall, the PREE-
MREE difference was < 100 kcal/day for the HB, FAO,
Schofield, De Lorenzo, Wong and ten Haaf equations.
The mean bias was as follows: HB − 3.9%; Schofield +
4.4%; FAO − 4.4%; De Lorenzo + 2%; Wong − 1.4% and
ten Haaf + 4%), and greater for the Mifflin (− 7%) and
Owen (− 11.3%) equations.
(As shown in Fig. 1) the precision accuracy at the

individual level (percentage of athletes with a PREE
within ±10% of MREE) was higher for the new equations
(Eq. A 82.4%, Eq. B 92.2%) compared to those selected
from the literature (~ 45% for the Owen, ~ 65% for the
Mifflin and ~ 75% for the Harris-Benedict, FAO, Scho-
field, De Lorenzo, Wong and ten Haaf equations).

Bland-Altman plots of PREE-MREE differences
Lastly, the Bland-Altman method was used to quantify
the agreement between PREE and MREE. Figure 2 shows
that the best agreement was found for the new formulas.
For the other equations, the 95% limits of agreement
were wider (+/− 200–300 kcal/d) with the largest values
observed for the Mifflin and Owen equations.

Table 3 Characteristics of the study sample according to sport specialty

Cycling Water polo Masters
swimming

Karate Ballet Dance Boxing Running

(n = 22) (n = 16) (n = 24) (n = 17) (n = 15) (n = 11) (n = 21)

Age
(yrs)

27.0 ± 2.7cdef 24.2 ± 6.6c 40.4 ± 4.5abdefg 18.8 ± 2.7aceg 19.1 ± 1.1acg 20.7 ± 2.7aeg 29.0 ± 9.9cdf

Weight
(kg)

69.2 ± 5.2bcg 88.8 ± 4.9acdefg 76.6 ± 10.0abdeg 69.5 ± 10.4bcg 64.1 ± 5.2bc 70.0 ± 5.2bg 61.1 ± 6.3abcdg

Stature
(cm)

181 ± 6defg 185 ± 3cdefg 176 ± 5bf 176 ± 7ab 175 ± 4ab 169 ± 5abc 172 ± 5ab

BMI
(kg/m2)

21.2 ± 1.3bcf 25.9 ± 1.8adeg 24.6 ± 2.8adeg 22.5 ± 2.7bcg 20.9 ± 0.9bcf 24.7 ± 0.6aeg 20.6 ± 1.2bcdf

MREE
(kcal/die)

1866 ± 142beg 2195 ± 244acdefg 1766 ± 188bde 1928 ± 207bceg 1567 ± 107abcdf 1946 ± 127beg 1641 ± 120abdf

RQ 0.785 ± 0.031beg 0.865 ± 0.046a 0.815 ± 0.081 0.804 ± 0.049g 0.850 ± 0.049a 0.807 ± 0.082 0.870 ± 0.070ad

BI-index
(cm2/Ω)

65.4 ± 8.0bg 78.8 ± 8.3acdefg 67.6 ± 7.7bg 64.0 ± 8.7bg 67.7 ± 6.3bg 65.9 ± 5.7bg 55.2 ± 5.0abcdef

PhA
(degrees)

8.31 ± 0.79cdg 8.11 ± 0.49c 6.96 ± 0.54abdefg 7.59 ± 0.60acf 7.75 ± 0.53cf 8.57 ± 0.65cdeg 7.60 ± 0.38acf

Data are expressed as mean ± standard deviation.
BMI body mass index, MREE measured resting energy expenditure, RQ respiratory quotient, BI-index bioimpedance index, PhA phase angle.
acycling; b water polo; c master swimming; d karate; e ballet dance; f boxing; g running
p < 0.05

Table 4 Evaluation of new and selected predictive equations in
athletes (validation group)

REE predictive equations Difference
PREE-MREE
kcal/d Mean (SD)

Bias§, % RMSE
kcal/d

Equations for normal-weight subjects

HB − 82 (146)* − 3.9 107

Schofield − 93 (142)* − 4.4 108

FAO/WHO/UNU − 92 (140)* − 4.4 107

Mifflin − 141 (156)* − 7.0 164

Owen − 222 (140)* − 11.3 225

Equations for athletes

De Lorenzo 21 (173) 2 94

Wong − 41 (153)* −1.4 104

Ten Haaf 60 (152)* 4 98

Equation A − 17 (134) − 0.3 88

Equation B − 20 (124) − 0.6 76

Average REE measured with indirect calorimetry = 1826 ± 234 kcal/d
REE resting energy expenditure, MREE measured resting energy expenditure,
PREE predicted resting energy expenditure, RMSE root mean square error, HB
Harris and Benedict, FAO Food and Agriculture Organization
§ Mean percentage error between predicted and measured REE; * p < 0.05
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Discussion
The primary purpose of this study was to develop and
cross-validate new equations for estimating REE in a
group of elite male athletes of different sport specialties,
and then to compare them with existing formulas. The
new equations provide the best prediction of REE in the
validation group, with the use of BIA-derived PhA sig-
nificantly improving the prediction power of the
equation.
Meeting energy requirements is a priority of athletes.

Inadequate energy intake might compromises
performance and reduces the benefits of training [1, 2].
Energy needs are usually estimated by REE multiplied by
the appropriate activity factor. To date, only a few
number of predictive equations for REE have been
specifically developed for athletes [15–18]. De Lorenzo
formula [15] was derived in a sample of 51 male athletes
(22 water polo, 12 judo, 17 karate) who exercised at least
3 h/day; in that paper REE was underestimated by most
of the seven equations selected from the literature.
Later, Wong et al. [16] proposed sex-specific predictive
formulas for elite Malaysian athletes in most cases prac-
ticing combat sports. Of note, Malaysian population
seemed to have relatively low body frames and size and,

therefore, low REE [16]. They found that mean resting
energy expenditure measured by indirect calorimetry
were similar in males to values predicted using the HB
[7], FAO [9] and De Lorenzo [15] equations; indeed the
accuracy of the predictive formulas was not evaluated.
Also, ten Haaf et al. [17] developed two predictive equa-
tions for recreational athletes practicing > 3 h/day two
times a week, the first formula being based on weight,
the second one on FFM (determined using pletismogra-
phy). Authors pointed out that the weight-based equa-
tion had a higher precision accuracy (83% for males)
compared to the De Lorenzo formula (77.4% for males).
Finally, Watson et al. [18] derived two formulas in a
sample of 66 collegiate female athletes from eleven dif-
ferent sports; the first equation was based on weight, the
second one on FFM (estimated by skinfold thickness).
Authors stated that both equations were more accurate
for resting metabolic rate estimation in their population
but did not evaluate bias or precision accuracy. Jagim
et al. [5] did not derive new formulas but determined
the accuracy of several predictive equations for REE in
both male and female athletes; most of the five equations
selected from the literature underestimated REE in both
sexes. Of the previous studies, only the one by Watson

Fig. 1 Accuracy of prediction equations for measurements of resting energy expenditure within ±10%

Fig. 2 Bland - Altman plots between differences and mean predicted-measured resting energy expenditure using new equations
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et al. [18] described the relationships between REE and
age or different anthropometric variables, showing that
age was not related to REE while the best predictor was
body weight (r = 0.590). These results are confirmed in
our study since body weight was the best predictor (r =
0.768) while there was no association with age. Some au-
thors also introduced FFM as predictor, with no increase
in the prediction power [17, 18].
In the present study, first we developed an equation

based on age and main anthropometric variables
(weight, stature, and BMI) (Model 1, Eq. A). In addition
to age, weight emerged as the only significant predictor.
Two of the existing formulas for athletes identified also
stature as predictor [15, 17] while in the athletes we
studied, REE was correlated to stature in univariate
analysis, but not in multiple regression analysis, p =
0.374).
Instead of using BIA-derived body composition

(strictly dependent on the BIA formula used), we opted
for including raw BIA variables (BI-index and PhA) in
the regression model (Model 2, Eq. B).
BI-index is directly related to FFM and quite always

included as predictor in the BIA equations to predict
FFM. More recently, attention has been focused on the
role of PhA as a biomarker of body cell mass and
muscle quality as well as of water distribution (ratio
between extracellular water-ECW and intracellular
water-ICW) [22]. Thus, high PhA indicates greater cellu-
larity (e.g. more body cell mass relative to FFM), cellular
integrity and cell functions [22]. It may represent a
proxy parameter of muscle quality in athletes, being sig-
nificantly associated with physical activity and muscle
strength [35, 36]. A recent systematic review showed
that PhA was higher in athletes vs controls whereas it
was still uncertain to what extent PhA differs among
various sports [37]. In addition, PhA may help in detect-
ing low muscle quality and identifying sarcopenia [38].
In previous studies, we also found that both BI-index
and PhA improved the prediction power of REE under
physiological conditions [24]. The findings of the present
paper confirmed that PhA was as a significant predictor
along with weight, with R2 increasing from 0.637 to
0.675 and SEE decreasing from 150 to 141 kcal/day. On
the contrary, BI-index was not recognized as a stronger
predictor than weight, possibly because of low body fat
percentage and low BMI. In general, for those with no
access to BIA, only age and weight values are sufficient
for predicting REE in male elite athletes.
As additional aim, we validated the two new equations

and eight formulas selected from the literature (5 for the
general population and 3 for athletes), at both
population and individual level. On the average, the
accuracy was very good for our new formulas, since bias
ranged within ±1%. Similarly, most of the selected

equations, except the Mifflin and Owen ones, showed an
acceptable prediction accuracy (bias ±5%).
From a practical point of view, evaluating the accuracy

of predictive equations at individual level (within ±10%)
is crucial for the nutritional management of the single
athlete. This study shows that precision was high for the
new formulas, especially for Eq. B (~ 92%) including
PhA in the model while it was lower, being close to 75%,
for most of the other formulas (with the exception of
the Mifflin and Owen ones for which it was much
lower). Looking at the Bland-Altman plots, most of the
prediction equations were more accurate at lower ranges
of MREE and less accurate with the higher REE values.
The new formulas gave the narrowest limits of agree-
ment and the lowest bias.
To the best of authors’ knowledge, this is the first

study that developed and cross-validate equations for
elite athletes to predict REE based not only on anthropo-
metric measures, but also on raw BIA variables. Overall,
we conducted this study in a reasonable large sample of
individuals, using recognized and well-documented
methods and in line with similar previous studies in
healthy subjects. Furthermore, the assessment of BIA
with the same device has limited the device-related
changes in PhA. Nevertheless, these findings are subject
by a number of limitations. Since this is a retrospective
study, our findings need to be confirmed in larger sam-
ples and in different sports disciplines. Additionally, we
studied elite athletes mostly practicing endurance sports.
Lastly, female athletes were excluded from the analysis
due to the small number of potential participants (n =
27); therefore, we have developed new athlete-specific
predictive equations for estimating REE in elite male
athletes only.

Conclusions
As main finding, in elite athletes BIA-derived PhA is a
significant predictor of REE and improved the prediction
power of the model. The new equations exhibited a very
good accuracy at population level, while precision at the
individual level was markedly higher compared to that
reported by previous studies in the general population as
well as athletes. However, the use of PhA as predictor of
REE requires further research with respect to different
sport specialties, training programs and training level.
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